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Abstract—The creep buckling of viscoelastic structures is investigated analytically and exper-
imentally. The theory of linear viscoelasticity is used to model polymeric column specimens subjected
to constant compressive end loads. The growth of initial imperfections is calculated using the
hereditary integral formulation. Solution techniques are developed for small displacements and also
generalized to include the effects of non-linear kinematics. It turns out that the kinematically linear
model represents the deformation process closely and conservatively ; material non-linearities are
not dominant since maximum strains of the order of only 2% are encountered. The analyses are
exact with respect to (non-linear) kinematics and linearly viscoelastic material representation. A
failure criterion based on maximum deformation allows the column life to be determined from the
material relaxation modulus if the initial imperfections are known. A discussion on the possible
generalization of the results to include plates and shells is presented.

Results of creep buckling experiments performed on PMMA specimens at elevated temperatures
(accelerating the creep behavior) are reported. The relaxation modulus of PMMA is represented
by a Prony-Dirichlet series and the model is used to simulate the laboratory experiments. Model
and experimental results are compared and discussed especially with respect to uncontrollable
material behavior.

1. INTRODUCTION

Providing for structural stability in engineering designs is a concern of long standing. With
trends in aerospace applications of composite materials oriented towards high temperature
use a question arises with regard to their performance over prolonged periods of time.
Especially with the possible application of thermoplastics-based composites the long-term
development of structural instability under a variety of circumstances (prolonged high
temperature exposure) adds to time dependent failure modes in composite structures. In
this paper we examine the problem of buckling of a linearly viscoelastic column as an
illustration of the evolution of the transverse instability in more complicated structures such
as plates and shells.

The advent of polymer based composites and their mechanical response sensitivity at
elevated temperatures introduces the viscoelastic response into possible long-term structural
behavior. It is particularly important to examine the methods of predicting long-term
behavior (months, years) on the basis of either fundamental material properties or by
deduction from relatively short-term tests. Failures of interest here are those that lead to
global instability in the classical structural sense (struts, plates, shells) as well as local
instabilities associated with composite delamination. The latter may result from local
damage and inhomogeneous stresses associated with bending and thermal gradients through
a structural member. Moreover, the problem of fiber crimping as a time-dependent problem
of elastic fibers buckling in a viscoelastic matrix is of interest inasmuch as the intrinsic time
dependence of the instability problem derives from the polymer properties and one would
expect to understand the evolution of that kind of damage once the more basic problem is
more fully delineated.

The first attempt at addressing creep buckling was probably offered by Freudenthal

t Current address: School of Mechanical and Aerospace Engineering, Oklahoma State University,
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(1946) who considered the buckling of a column possessing the properties of a Maxwell
material. While he formulated the problem in terms of a power series expansion, postulating
the series divergence as indicating loss of stability, it was pointed out by Kempner and
Pohle (1953) that the coefficients of the series were incorrect and that a critical time as
posed by Freudenthal did not exist. Hilton (1952) used the Shanley criterion of loss of
moment equilibrium (collapse) for a Maxwell material model and for a standard linear
solid. Geophysical interests, including those of Biot (1959, 1961) and Sherwin and Chapple
(1968) centered on the folding of mineral veins and tectonic layers ; these developments up
to 1962 are well summarized in Kempner’s review (1962). Fliigge addressed the same
problem with more advanced material models by attacking the problem in the Laplace
domain (1975) without, however, developing the fully time-dependent response. Prospects
of space re-entry heating led Libove (1952), and Hoff (1954, 1956) to study the buckling
of high temperature aluminum alloys. Huang (1976) revisited the Libove and Hoff problems
under inclusion of large deformations and power law hardening plasticity as well as second
phase creep. The most recent analysis by Bodner (1991) addresses the effect of creep in the
presence of (metal) yielding to explore apparent paradoxes of buckling in the plastic range.
Also, Schapery (1987) has addressed the linearly viscoelastic buckling problem in relation
to ice folding, primarily in the Laplace domain and showed that the long term growth of
the deflection has exponential character. To determine the complete history he suggests the
(numerically possibly unstable) inversion of the Laplace transform or taking recourse to
earlier established approximate analysis methods.

Our aim in this work is directed at formulating the problem exactly within the realm
of linear viscoelasticity and at the same level of kinematics as the classical Euler buckling
problem. Under these precepts the resulting solution would be “exact” and experimental
verification would seem unnecessary. In fact, the analysis is available to explore the sensi-
tivity of the process of instability evolution subject to variation in any of the problem
parameters. However, in the interest of examining the degree of agreement between analysis
and controlled conditions in a laboratory environment we report also on experimental
corroboration.

Buckling of elastic structures is most often discussed in the context of a bifurcation or
eigenvalue problem. The question has been considered whether for the time dependent
problem a similar formulation exists such that a perfectly straight, slender column experi-
ences lateral deformation under axial load after some (critical) time, which deformation
then grows at a determinable rate. We have not approached the problem in this manner,
but rather, after discussion with various colleagues follow the understanding, expressed by
Tvergaard (1985) with respect to rate sensitivity of elasto-plastic materials, that the insta-
bility problem takes the form of time dependent response of an initially imperfect structure.
In this spirit we formulate the deformation problem in the next section, followed in Section
3 with the complete, closed form solution for a standard linear solid as a benchmark, since
the general solution, delineated in Section 4, needs to draw on numerical methods. Section
5 deals with the effect of large deformations for the same problem to illustrate that this
complication does not, in effect, invalidate the conclusions, drawn in the subsequent section,
on the basis of the linearized analysis. Section 6 relates the results to observations on quasi-
elastic arguments and bounds the time to achieve critical deformations, it also points to
generalized deductions applicable to structures of widely different shapes. Finally, we
conclude this presentation with an experimental examination and comparison of the ana-
Iytical results with experimental observations.

2. FORMULATION OF THE PROBLEM

Consider a simply-supported beam/column of unit depth subjected to compressive
loads applied at the end points of its neutral axis and lateral loads applied normal to the
beam axis. The column neutral axis possesses an initial profile wy(x) as indicated in Fig. |
along with the full coordinate definitions and appropriate displacement components. Axial
strains are associated with the axial displacement u,(x, ) which will be presumed to remain
small compared to the column length. Denoting the additional defiection by w(x, ¢) and
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Fig. 1. Problem geometry.

allowing, for the present, only small section rotations, one finds the strain ¢,, from

ou(x,z,t)  uy(x,t)  O*w(x,f
sxx(x’ z, t) = S(X, Z, t) = Ox = Oax -z aiZ )

)

Using the convolution form of the unidirectional constitutive behavior and dis-
regarding inertia effects, one derives from the equilibrium of bending moments the relation

n 2°w(x, &) *w(x, )  d*we(x)
1l E(t—€)~———a4xaé =P —F 7"+ (2
subject to the boundary conditions
w0, =w(l,t)=0, M@, =M1 =0. (3a,b)

Different boundary conditions than these can be accommodated equally well so that the
current development is applicable to other column buckling problems and, in fact, the
results developed here are readily generalized for these different problems (see Section 6).
The boundary value problem in eqns (2) and (3a, b) is solved in terms of a Fourier series
by letting

we, =Y Am(z)sinﬁ, wo(x) = ¥ Bmsin'l’;‘—x. (4a,b)
m=1

m=1

Use of these expansions in (2) renders an equation which satisfies it term-by-term, and
upon non-dimensionalizations in the forms

Py =20 (s2)
PO =5 =5 (5,0)
) = 220, g, =P (50,9
the governing integral equation becomes
mir0a0) - [ 10-0 D st pia 0 +p0pa =0, ©

the solution of which allows the construction of the lateral displacement w(x, £) on a mode-
by-mode basis. The solution of this Volterra integral equation presents, in general, no
mathematical problem, though the means of solution depends strongly on the mathematical

SAS 30:8-E
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representation of the relaxation function E(7). While the stability problem for general and
realistic material behavior demands ultimately numerical methods (see Section 4) we turn
first briefly to the solution for the simple material representation of a standard linear solid,
for which a solution may be obtained in closed form. The generalization of this latter
approach to increasingly more complex material representations is, analytically speaking
possible, but the analytical/numerical involvement is, in our estimation, as large or larger
than the numerical effort delineated in Section 4.

Kempner (1954) has dealt with the standard linear solid in buckling. We delineate the
subsequent analysis here because the closed-form solution in terms of the convolution
integral allows us to gage the accuracy and reliability of the numerical process used in
Section 4, since the numerical interpretation of functions involving relaxation or creep
behavior extending over many decades of time has demanded, in our past experience, special
precision and/or convergence considerations.

3. EXAMPLE FOR THE STANDARD LINEAR SOLID

The standard linear solid has the important short and long time characteristics experi-
enced in the behavior of many engineering polymers. The mechanical analog of this material
model is a linearly elastic element in parallel with a Maxwell material model. In the typical
vernacular of viscoelastic material description we refer to the “glassy buckling load” as the
Euler load computed with the short term (glassy) modulus E(0), while the term “‘rubbery
buckling load” refers to the Euler load based on the long term modulus E(c0).

We begin by differentiating the equilibrium equation (6) with respect to time, rendering

’ da,, (€)

=9 4z d& —m*r(0)d, (1)

—m* (), (07) —m? j

+ (O (1) +p(D), () +p(O)rn =0 (7)

where the dot [e.g. F(t—¢&)] implies differentiation with respect to the argument. The
isothermal relaxation modulus of a standard linear solid in its normalized form is

rt)=ro+rie ™, r(0) =r+r, =L 8)
Since, by virtue of (8)
F(t—8) = —Ar(t— &)+ Ar, )

combining (6), (7) and (9) yiclds a linear differential equation for the growth of each
buckling mode as

[p(0) —m?lan () + [P(8) + Ap(8) — Am?r Yot (1) + P(D) B, + Ap(D = O, (10)

where r(0) = 1 has been used. This equation may be solved analytically for simple forms
of the loading function, p(¢). For constant end loading, p(¢) = p,, eqn (10) becomes

[po— M1 () + Apo —m*r ]t (1) + Apof, = 0, (1

which has the solution for py < 1

+ pﬂﬂm pO_mzrm pOﬁm
o, (1) = |:ocm(0 )+IJ—O—W:|expl< 5 ~>t—‘;—— (12)

2 2 M
@© m=—Ppq oMy

The nature of this solution depends on the magnitude of p,; there are three distinct cases:
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Fig. 2. Constant end load response of standard linear solid column.

(1) when p, < m%, i.e. when the load is less than the “rubbery buckling load”
for the mth deformation mode, the response exhibits a decaying exponential term and
asymptotically approaches a long term equilibrium state ;

(2) when m?r,, < p, < m? the response has a growing termt and creep instability
occurs ;

(3) when m? < p, immediate or “‘glassy buckling” occurs.

Solutions of eqn (12) for the lowest mode (m = 1) and for two different end loads are
plotted in Fig. 2, where an evaluation of (12) was made assumingf r,, = 0.00646 and
A =0.23 hr s '. For p, = 0.0005 equilibrium is approached asymptotically since p, < r.
For py = 0.0075, however, creep buckling occurs, leading to unbounded deflections as time
progresses. Shown in the figure are the responses of the mode m =1 to the indicated
loading.

Of significant practical importance are the growth rates of the deformation modes, for
these rates determine which of the modes will ultimately dominate the deformation process.
We consider the case r,, < po/m? < 1. Defining g as the growth exponent

—m?r,,
APO

(m, po) =
g Do mz_po

, (13)

we see that it is a discrete, decreasing function of the mode number m, but increasing in
the load p, and becomes unbounded as po/m* — 1.0.

It is seen that the lowest deformation mode grows the fastest and that as the glassy
buckling load for the first mode is approached from below its growth rate becomes
unbounded. Thus, as the glassy buckling load of the first mode is approached the first mode
grows infinitely faster than the higher modes. However, even when p, approaches the
rubbery buckling load from above, the growth rate of the first mode is still significantly
higher than those of the higher modes. For example, if one considers only load cases in
which at least two modes grow unboundedly, it can be shown that for r,, < 0.25 the ratio
of growth exponents, g(1, py)/g9(2, py) has a minimum with respect to load. This minimum
approaches 4.0 as r,, —» 0 and becomes unbounded as r,, — 0.25§. From this assessment it
is seen that for significant deformations (unless the m = 1 component of the geometric

T The growth is exponential for p, > m*r,, and proportional to { when p, = m?r.
1 This value is characteristic of the long term plateau behavior for medium molecular weight polymethyl-
methacrylate.

§ r,, = 0.25 corresponds to the case when *glassy buckling load™ for the first mode equals “rubbery buckling
load” for the second mode.
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imperfection is identically zero) the time response of the first mode will dominate the column
response.

Having summarized analytically and in closed form the most important features of the
buckling/deformation behavior for a simple viscoelastic solid, we use these results to
guarantee that the numerical integration scheme derived in the next section renders reliable
results.

4. THE CASE OF REALISTIC MATERIAL PROPERTIES

There are two readily available methods for the numerical integration of eqn (6) : The
discretization of the integral (Hopkins and Hamming, 1957), renders a matrix equation of
(nearly) triangular form which is readily solvable. For details on its formulation for this
problem the reader is referred to Minahen (1992).

4.1. The numerical scheme
The method adopted subsequently (Taylor et al., 1970), draws on the (customary)
representation of the relaxation modulus in terms of a Prony—Dirichlet series

r(f) = rm+Zn: rie~h p(0) =1, (14)

i=1

where r,, and r(0) = r, represent again the long term (rubbery) and short term (glassy)
moduli. With the subdivision of the range of integration into discrete intervals ¢ in mind,
consider the integral /(¢;) along with its approximation which substitutes the average of
a,,(f) over the interval in place of its continuously varying value;

E da,, (£

d

dé E=1;

I=1I(t) = j dé ~ ﬁ P(t— t_1) At,, (15)
k=1

J
0+

for sufficiently small intervals this approximation is of little consequence. Using a difference
approximation for the time derivative

do, (&)] A 16
dé |-, AL
and upon using eqns (14) and (16) in (15) one finds
I ~ [roo + r,-e*‘f(’f“'f*’jIAoc,’.',—Froo(a,’; P+ ) riy, amn
i=1 i=1
where we have used
=1 ) j—1
py =Y e M DAgk  and o' = Y Ak +a,. (18)
k=1 k=1
u;; can also be written for recursive use as
iy =e M- A) ! +e Dy, . (19)

The evolution equation (6) can now be written at time ¢ = ¢; with the help of (17)(19) as

—m*r(;)0,(0%) —m* L4 p(t;)oi + p(t) B = 0, (20)
which, with
of = ol '+ A, @n
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Table 1. Prony-Dirichlet series parameters for PMMA at 75°C

Relaxation Modulus Parameters

log E; log (1/4) log E; log (1/4)
dynes cm ™2 seconds dynes cm~? seconds
9.2333 —5.556 9.7067 2.444
9.5386 —3.556 9.4562 3.444
9.2238 —2.556 9.0211 4.444
9.5556 —1.556 7.9474 5.444
9.3217 —0.556 7.3965 6.444
9.5394 0.444 6.9026 7.444
9.4271 1.444 log E(c0) 8.260

renders

p()[Aas +ai '] —mz[roo + Y rem T *’]Aa,f;, =mro (o ' —0,)

i=1

() B AP (1) ©F) 42 Y ropy, (22)

for the increment of the non-dimensional amplitude of the mth deformation mode, which
may be extracted explicitly as

1

Aoc,’,', = 7l
p(t)—m'ro—m® 3 rie” M4m0

i=1

x {mzr(t,»)am(()*) +mr (' —a,) +m? Z riptii—p(t) o ! +Bm]}, (23)

with the total amplitude of the mth mode o, at time ¢, being computed from eqn (21).

4.2. Application to a column of PMMA

We choose PMMA (polymethylmethacrylate) as a model material because it possesses
viscoelastic properties typical of thermoplastic polymers and because, with suitable tem-
perature control, experiments can be performed in the laboratory on a reasonable time
scale.t The exponential series representation for the relaxation modulus is given in Table 1
and compared with the experimental data (centers of the symbols) in Fig. 3.

11 T T T — T

-
o

log E(t)
E in dynes/cm?

©w

1 L 1

8
-6 -3 0 3 6 9

logt, tin hrs.
Fig. 3. PMMA relaxation modulus at 75°C.

1 Although in its commercial and uncrosslinked form PMMA does not possess a true long term or “rubbery”
modulus, we consider its rubbery plateau to represent this property ; the issue does not arise in the experimental
work.
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Fig. 4. Load sensitivity for PMMA column.

For the numerical evaluation we limit ourselves to computing the evolution of only
the first mode (m = 1) because, as shown for the standard linear solid, the higher modes
develop at a slower rate as long as f, is not identically equal to zero. Before examining the
results of the computations we note that the solution to eqn (6) is a linear function of the
initial imperfection (§,,) ; we shall recall this result in connection with the experimental work.

Figure 4 shows the development of the (fundamental mode) amplitude for five different
load levels to illustrate the continuous imperfection growth. As pointed out by Kempner
(1954) and in Section 3 for the simple solid, and by Schapery (1987) for more complex
materials, there is no natural time (limit) at which “dynamic” conditions take over, and
the criterion as to when failure is accomplished must be based on either load carrying ability
(3), or on a criterion of maximally achieved deflection. In the present example of time-
constant loading, loss of load carrying ability is not predicted by the linearized theory, nor
is it by the fully non-linear theory, for the same reason as shown later. We define ““failure”
of the column, therefore, as the achievement of a critical displacement, say, a certain
percentage of the beam thickness 4 or of its length L. For the present discussion we choose
a critical deflection as 2.4A. This value is marked in Fig. 4 by small circles; upon cross-
plotting the corresponding times #, achieved for different values of applied load one obtains
the result shown in Fig. 5 as curve “A.” It can be seen that large changes in time dependent

log r (t)
log p (t¢)

-6 -1 4 9.

log te, tc. in hrs.

Fig. 5. “Buckling times” for PMMA columns.
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Fig. 6. Geometry for the visco-elastica.

behavior can result from relatively small changes in the load level. If the times ¢, are accepted
as the ““buckling times” then Fig. 5 represents the time dependence of the column failure
under axial loading.

So far we have examined the column deformation behavior under the restriction of
small deformations, specifically small section rotations. This assumption leads naturally to
unbounded deflections of the column which result is not only physically unappealing but
raises the question whether large deformation alters the time response significantly.

5. THE VISCO-ELASTICA PROBLEM

For the large deformation formulation we retain the linearly viscoelastic behavior and
assume for this development that strains remain sufficiently small to admit that material
description. This assumption will have to be verified after the analysis is complete.

Let (s, ¢) represent the section rotation at position s along the column, (¢f. Fig. 6)
the latter being measured as the arclength. In place of eqn (1) one now has

6,2 1) = 2o(s ) —z 22D, @4
Os
so that the counterpart of eqn (6) becomes, in non-dimensional formt
2*0(,,9) ' 2’0, %) . .
—r(®) Erean B r(t—¢) 0 oE d¢ = p()n®[sin O((, ) +sin 6, ()] (25)
and the boundary conditions of vanishing end moments (simple supports) as
00(s, 1) _00(s, 1) _
aS s=0 a Os s=1 =0 (26)
and
w(0,1) = w(, 1) =0. 27
The lateral deflection at s = //2 is written as
112
w(lj2,f) = J sin (s, 1) ds. (28)
0

The visco-elastica problem is a two-point boundary value problem, which will also be solved
numerically for realistic material properties of PMMA.

We summarize here briefly the development for the material representation by a Prony
series, referring the reader for more detail to Minahen (1992). The integral in eqn (25) is
approximated by

J %0
SO =JC )~ Y rit—t_)) (9]

P N é=lkAtk. 29

T arclength has been normalized using column length.
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Applying a differencing scheme to approximate the time derivative and denoting spatial
derivatives by a superscripted prime [e.g. &'({, 1)] gives

3O = {rw £ 3 rey- l>}Ae;'(c>+rw B/ O =8O+ Y @, (30)

i=1

where the Prony series representation [eqn (14)], of the relaxation modulus has been used
as well as the definition

=1
vy (D) = k; e MU b AGL(D). (31

By using techniques similar to those used in the analysis of the geometrically linear model,
v;; can be put into a recursive form

vy () = eTHO DA (@) +e Dy, (0. (32)

Upon substitution of eqns (30) and (31) into eqn (25) a non-linear ordinary differential
equation in { results in

—1 n
A0/ () ~ " {roo [A6]_ () =051+ X rvy; (©)

fe= b

+p(t)n*[sin 6, () +AG,(0)] +sin 90(5)}, (33

which is solved numerically using the shooting method to iterate on a solution at each time
step. A fourth order Runge—Kutta integration scheme with adaptive step size is used to
integrate from s = 0 to s = /. The result of the numerical evaluation of eqn (33) renders
the results shown in Fig. 7. Suppose that for present purposes one defines failure again as
the achievement of the maximum deflection ; from a practical point of view the attainment
of this condition is way past practical significance for “buckling descriptions” because it
implies that the column arc shortening is such that the two ends touch. Two observations
are then in order. As expected the solution follows the linearized behavior for a substantial
fraction of the deformation history. Second, it is clear that the linearized version provides

al geometrically
tinear

geometrically |
nonlinear

loga/p
]

-3 -1 1

logt, tin hrs.
Fig. 7. Response of PMMA visco-eiastica.
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failure times which are on the conservative side of any real estimate. This observation would
seem important in interpreting the buckling behavior of viscoelastic structures.

6. EVALUATION OF RESULTS AND GENERALIZATIONS

We return to the results of the linearized solution, in particular to Fig. 5 and note that
the plot of applied load against the time to failure (z.) looks like the relaxation modulus
normalized by its glassy value ; this function is also shown in Fig. 5 as curve “B”. For the
realistic material these two curves turn out to be identical except shifted relative to each
other along the logarithmic time axis.t Thus the failure time for time invariant axial loading
may be approximated by a formula simulating the quasi-elastic buckling behavior of simply-
supported columns in the form

polt)B

b = all) = g P’

(34)

where J. is the critical deflection. We have remarked earlier that for loads obeying the
inequality p, < r,, a stable deformation results. While this latter condition implies that
displacements will not grow without bound below this level, it does leave open the question
whether a critical displacement will, nevertheless, be achieved in a finite time. Clearly, there
will be some load level below r,, which may satisfy the critical displacement criterion, and
that load will depend on the magnitude of the critical displacement chosen. We do not pursue
this issue further in detail, but refer to this inequality as providing the (approximately) lower
instability boundary.

Returning to eqn (34) we note that the shift factor ¢ multiplying the failure time ¢,
depends on the size of the critical displacement chosen ; because of the proportionality of
the deformations to the initial imperfection, the dependence of the shift ¢ depends also, in
a simple way on this quantity. If it could be shown that its value is generally smaller than
unity one would deduce that a choice of unity of this factor (no shift) would always lead
to conservative time estimates through the quasi-elastic formula

po(t)B

=4 = =)

(35)

which is the simple Euler formula with Young’s modulus replaced by the relaxation modulus
as a function of the failure time #.. An answer to this question could be provided by repeated
computations as those shown in Fig. 5 with various ratios of critical deflections to the initial
imperfection. Instead of offering this numerical development we choose to elucidate a simple
though explicit result in terms of the standard linear solid. Recalling eqn (12) and writing
it for a(z,) = 4. yields

_ _ PoB Pob Po— T PoB
0. = a(t) = [1 - +p0_rw]exp i( >t°_p . (36)

0 o

It follows that

1+5°<1 ’“)
11— 21—
f=~—P B\ b/ | G7)
lpo—roo po_r
1+ s
1—po

t The relaxation modulus appears ‘“bumpy™ as a result of the Prony-Dirichlet series representation.
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log r (t,)
log p (to)

-4 -2 ] 2 4 6

log te, te in hrs.

Fig. 8. Buckling time for standard liner solid.

A plot of the buckling time as a function of applied load is shown in Fig. 8. The
material properties used in the curve are the same as used in Section 3 and the normalized
relaxation modulus of the material is also plotted in Fig. 8.

Two observations are evident from the figure : first if one were to estimate the buckling
time using the normalized relaxation modulus in place of the actual buckling time curve
the error would be conservative by about three orders of magnitude, and, second, for the
simple material model the predicted buckling time curve is not represented by the relaxation
curve shifted along the log-time axis as was the case for the results based on the properties for
a real material, PMMA. This observation is in keeping with results from other viscoelasticity
problems (Schapery, 1962), and hinges on the rate with which viscoelastic properties change
with log, 7 in the transition region. We next use eqn (37) to demonstrate explicitly how the
shifting between the relaxation function and the curve representing the buckling failure
depends on the critical displacement and the initial imperfection. We do this by estimating
the time scales for the two curves when either r(¢) or p(z.) have dropped by 1/e of the initial
value (cf. Fig. 8). From eqn (8) one has then [r(0) = 1]

. 1
roo+rle_A(rc)’ =‘e’, ¥y =1_rcos (38)
which, because r,, < 1/3, r; ~ 1 yields
1
(tc)r = }" (39)

while the failure time determined from eqn (37) with p, = 1/e yields

), = w;:(e— Din [3; (1 + %)] (40)
or,ife~3,
1 [2(, 6\T
(tc)p o~ }ln [5 (1 -+ E)] . (41)

The shift factor ¢ between the curves for buckling failure and relaxation response is thus
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2
6~In B <1+ %)] , @)

which, since typically é./8 > 1 renders a logarithmic dependence on the ratio &./f. It is
interesting to note that the shifting depends on the non-dimensional ratio of the final or
maximal (8,) to initial or minimal (f) column deflection.

At this point it is of interest to observe that in 1969, Halpin and Meinecke (1969)
examined experimentally the proposition that the buckling load of a viscoelastic column be
given by the quasi-elastic result embodied in eqn (35). While several of the tests conducted
under different load levels and at different temperatures seemed to follow that behavior to
some extent, a portion of the tests did not conform to that relation. In light of the present
results it seems that the initial imperfection needs to be considered in the determination of
the ““buckling time’ and since that fact was not consistently accounted for in these early
experiments (initial deformations were assumed to vanish), one should not expect a unique
relation between the applied load and the “time”, however consistent the latter may have
been defined.

Finally we note that the sensitivity of the “buckling time” to the initial imperfections
is not very strong. To clarify this statement we refer to Fig. 4 and note that an increase in
the initial imperfection by a factor of 10 moves any of the curves downward along the
ordinate by a unit. Because of the (increasing) steepness of these curves in the vicinity of
the deflection designated as critical deflection such a vertical shift does not produce much
of a change along the log-time axis; in fact, that change in time amounts only to a factor
on the order of about 1.5 for this example. Hoff (1956) has made similar observations on
creep buckling though he dealt with the nonlinear creep appropriate for metallic structures
for which he found that a tenfold change in the imperfection size resulted in a change in
the time-to-failure given by a factor on time on the order of only 2.

6.1. Generalization to other structures

It is useful to consider the implication of the results in this section to columns with
other boundary conditions and to plate and shell configurations. While detailed results
have to be reserved for further and more detailed investigations, the following general
observations are in order, on the basis of analogy to the buckling of the elastic counterparts.

With respect to columns subject to different boundary conditions it is clear that
identical results prevail as long as integer multiples or subdivisions of the column length
produces boundary conditions contained in the present solution. The cases of other end
supports can be treated in a similar manner. Guided by the simply-supported solution
where the first mode rapidly dominates the deformation response one can readily perform
the creep buckling response analyses for other boundary conditions. In this case the nor-
malized quasi-static equilibrium equation is identical to that of the simply-supported column
[eqn (6) written for m = 1] when the end load is normalized by the glassy buckling load.
For the case of elastic plates and shells the equilibrium equations depend on the elastic
modulus as well as the bending modulus of rigidity

ER?
D=7 @3)

If one allows for constant Poisson’s ratio,f a not unreasonable approximation if one
is interested in nearly rigid behavior for structural purposes, then the time dependence of
this factor derives primarily from that of the relaxation modulus. It would stand to reason
that in the event of such geometrical shapes the growth of the (imperfection) deformations
would then be governed, at least to first order and before post-buckling deformations

+ Because neither the bulk modulus nor the Poisson function is known for PMMA—nor, to our knowledge,
for any polymer other than polyvinylacetate—there is really no other choice investigators have at this time than
to make such an assumption ; however, from the general behavior of these functions one has a good understanding
of the consequences of making this assumption.
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govern the response, by a function similar to that of the simple column problem. One might
consider further, postulating a critical deflection as a failure criterion, that the failure time
of the structure would be given by a curve “A” in Fig. 5, which is approximated in a rather
conservative way by the relaxation function.

So far, we have treated only examples of time invariant loads. While there are many
different kinds of load histories that may be considered, those of typical engineering interest
are monotonically (linearly) rising loads and repeat on—off loading. The latter would cor-
respond to typical load cycling experienced by an aircraft component under repeat use.
Similarly, it would be of interest to consider cyclically varying temperatures in conjunction
with similarly varying loads, simulating a typical loading cycle of the type encountered by
future high speed aircraft.

We shall not develop the detailed responses for these kinds of loadings but point out
that the solutions presented here provide first estimate bounds on the duration of such
histories. In the event of repeat loads at constant temperature, the total deflection under
repeat loading of, say, constant amplitude is smaller than the deflection resulting from
constant load of the same magnitude. It follows that the total time required to achieve for
the on—off load is given conservatively by the time for the constant load. In fact, it stands
to reason that the growth of the deformations is governed primarily by the average axial
load imparted to the column, rather than the maximal load if many cycles are involved ; in
initial examinations this is confirmed rigorously for simple material representations. We
next turn to the comparison of the present model analysis with experimental results for
constant end loads.

7. EXPERIMENTAL RESPONSE OF PMMA COLUMNS

Agreement between theoretical and experimental determination of buckling loads in
“slender” elastic structures has met with varying degrees of success. For instance, the simply
supported flat plate can withstand loads in excess of the (bifurcation) buekling load predicted
by classical analysis (a result explained by von Karman) while the buckling loads of thin-
walled cylinders at initial instability—but not necessarily for the whole post buckling
response—may occur at loads less than one-third of classical predictions. The disagreements
in these comparisons are normally due to two classes of inconsistencies between analysis
and experiment : (1) geometric imperfections in the experimental structure (Koiter, 1945),
and (2) inability to correctly model experimental boundary conditions (Babcock and
Sechler, 1964 ; Hoff and Rehfield, 1965). The slowly loaded slender imperfect column, for
which the buckling load is less than the yield load, begins to bend in response to moments
induced by these geometric imperfections and load misalignment. However, the bending
deformations remain small until the load approaches the Euler buckling load. If the column
is subjected to axial displacement control, the load increases to a maximum and then
remains virtually constant with increasing compressive displacement as fairly large defor-
mations occur.

Since our problem is that of a slender column where the model is “exact” to within
the restrictions of the kinematics of Euler buckling assumptions and the numerical solution
of the equilibrium equations, experimental verification might seem unnecessary. However,
to examine the agreement between our analysis and those of controlled, or perhaps uncon-
trolled, conditions in the laboratory, an experimental investigation is also reported here.

7.1. Description of the experiment

Specimens were held at constant, elevated temperature by electrical resistance heating
elements in a commercially available temperature control cabinet. An MTS servo-hydraulic
load frame was used to apply an initial load ramp and maintain a fixed end load for the
remainder of the test. The lateral displacement at the column mid-span and the axial
displacement of the actuator were measured using linear variable differential transformers
(LVDT’s) and all conditioned transducer ocutputs were recorded at uniform time intervals
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using a 12 bit A/D board on the hard disk of a micro-computer. A schematic of the
experimental setup is shown in Fig. 9.

All specimens were machined from a cell cast sheet of commercially obtained PMMA
(CYRO Industries Acrylite GP acrylic sheet).t The relaxation modulus was determined
experimentally and is shown, at a reference temperature of 75°C together with a Prony—
Dirichlet series approximation in Fig. 3. The specimens used were nominally 15.24 ¢cm in
length, 2.54 cm in width with a thickness of 0.635 cm. This geometry has a length to
thickness ratio of 24 and a glassy buckling load of 658 Nt. Hinged end conditions were
simulated at each end of the specimen by loading the specimen at the centerline of axles
which are supported by a pair of ball bearings. Consistent load alignment was accomplished
by notching each specimen end across the width at the mid-thickness which was then
matched with a key that was press fit into the bearing axle keyway as shown in Fig. 10.

The experiments were conducted by first allowing the specimen and grips to reach
thermal equilibrium at 75°C while the specimen was subjected to a small compressive
preload (=~ 10Nt). The preload was necessary to maintain contact between the specimen
and grips while thermal equilibrium was approached. A smooth load ramp was then
initiated. The test duration was defined by limiting the lateral displacement at the specimen
midspan to 2.0 cm. This displacement limit was set to prevent the specimen from snapping
out of the grips when the bearing axle rotation became excessive.

t Reported to have an average molecular weight between 1.4 million and 2.0 million. No validation of the
reported molecular weight was attempted.
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7.2. Results and discussion

A comparison of the numerical and experimental results is given for four different end
loads in Fig. 11 (a)—(d). The numerical results were calculated using the geometrically linear
model since this is adequate for the displacément levels allowed in the experiments (for
further comments see below). In the figures the thickness-normalized lateral displacement
at the midspan is plotted as a function of time including the portion derived from the initial
ramp loading. Since the response «(¢) is a linear function of the initial imperfection § the
response to different initial imperfections can be determined by vertically shifting the
response curves. Because it would have been difficult to measure the initial imperfections
directly and independently,} this technique was used to determine them for the specimens
tested. By including the initial load ramp in the numerical response the short term response
of the numerical and experimental responses were matched, using the initial imperfection
of the first mode as the fitting parameter. This procedure results in excellent agreement
between theory and experiment during the slow growth phase. Even when the growth
accelerates the model predicts the measured response reasonably well.

¥ Efforts to do so were made ; however, the experimental involvement at a level of sufficient precision soon
became disproportionate to the overall objective of the experimental work
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It can also be seen that when the theoretical and experimental results diverge at higher
strain levels there is no consistency of error. That is, for the cases shown in Fig. 11 in the
two cases (2) and (c), the model leads to larger deflections than were measured while in the
other two, (b) and (d), the model results in smaller deflections than measured. These
discrepancies cannot be explained through misalignment of load or non-linear material
behavior. First, great care was taken to assure alignment consistency from test to test, and
second, the method used to determine the initial imperfection, by its very nature, includes
the effect of any load misalignment. It is also unlikely that the differences between theory
and experiment derive from differences in boundary conditions since two mechanisms exist
to inhibit the introduction of end moments to the column : the ball bearing grips and the
cornered key used for load alignment.

The most likely explanation for the differences, in retrospect, is the variability in the
material behavior associated with the uncontrolled residual stresses in the commercial
PMMA which are not necessarily uniform over a large sheet as received. Material properties
measurements on PMMA paralleling and following the present study have revealed that
these residual stresses can be important and can account for distinct changes in the time
dependent behavior. Even careful heat treatment (annealing) of the material has not been
able to eliminate all the specimen-to-specimen variability in the time dependence. An
additional factor possibly influencing the deviations seen in Fig. 11 is the temperature
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variation experienced during testing. The environmental control unit was able to regulate
temperatures to only +0.5°C and this could be improved only by using an additional
chamber with a large thermal mass within the temperature control cabinet.

In this context, a comment is in order regarding the linear vs non-linear behavior of
the test material. We first note that no crazing, a definite sign of tensile non-linear behavior,
was apparent in any of the specimens. Next we observe that during the major portion of
the deflection growth the strains were below 0.5%, rising only during the final stages to
about 2% or above on the specimen surfaces. It is primarily during this last phase of the
deformation histories that interaction between residual stresses in the material and the
imposed deformations that non-linear effects could influence the time dependence of the
deflection growth. No information on this type of behavior exists reliably for polymers in
general, and for PMMA in particular. To further study this complicated material issue goes
considerably beyond the immediate objective of the present study.

In summary, the linear model together with the use of a single parameter, which
characterizes the geometric imperfection and load alignment, has been used to simulate
creep buckling experiments in the laboratory. The short term and slow growth phases of
the response are modeled reasonably well, while there exists some non-systematic variability
in the representation of the final growth phase which is, most likely, due to yet generally
poorly understood time dependent material behavior of polymers.
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